VTX Software Update

what's new since December

Sasha Lebedev, ISU

- Geometry and Detector response
- Charm/Bottom separation studies

Geometry (1)

- Maki Kurosawa tested configuration with thicker beampipe
- no visible increase in rad. legth, no DCA resolution deterioration

Theta (degree)

Black - fit to blue

Red - thin

Blue – thick

0.02 inch beampipe

Radiation Length VS Theta5

z = 0 cm

Radl X/X0 (%)

0.03 inch beamipe

Geometry (2)

- Reversed staggering angles in layer 3 (Maki)

Old geometry

New geometry

Detector response and other issues

- Kenichi Nakano and Manabu Togawa finishing detector response
 - Clustering and charge sharing in pixel layers done, to be committed to CVS next week after testing
- Remaining detector response items:
 - charge sharing in z direction in stripixels
 - charge diffusion (electron cloud is 4.5μm vs 50/80 μm pixels/strips)
- Work on new global tracking by Songyan Xu (ISU student) and Alan Dion
 - encouraging results with using momentum space
- Standalone tracking to be finalized after QM09 (Alan)

Charm/Bottom separataion using DCA (1)

Richard Petti

- DCA is calculated using VTX clusters in two pixel layers
- cluster association using Geant info
- both straight line and curved projections (see yesterday's e-mail)

Red-curved projections, black - straight line

Charm/Bottom separtaion using DCA (2)

Sasha Lebedev

- DCA is calculated using VTX clusters in two pixel layers AND Kalman Fit (global tracking info)
- cluster association using global tracking (cgl),
- straight line projections.

B/C ratio vs DCA from Geant info (fkin)

This is what we can get with a perfect detector

These plots are NOT properly normalized, DCA in cm

B/C ratio vs DCA from SVX two pixel layers

SVX clusters are associated using global tracking (cgl).

These plots are NOT properly normalized, DCA in cm

B/C ratio vs DCA from KalFit

These plots are NOT properly normalized, DCA in cm

Conclusions (c/b separation)

- Both approaches work
- No high DCA entries in my study (cgl problem?)
- Separation is worse at high P_T. Is this because of Lorentz boost?

backups

D and B mesons from PYTHIA

- Single D and B mesons from PYTHIA, decaying to electrons.
- D⁰, D⁺, D⁻⁻, and B⁰, B⁺, and B⁻⁻ only were used.
- Two data sets for D mesons:
 - ckin(3)=0. (default); for this sample b/c ratio is properly normalized
 - ckin(3)=10. For high P_{τ} range
- Full simulation and reconstruction

Expected electron yield (electrons from B scaled down) after 3σ DCA cut: The plot corresponds to ~1.7B min. bias pp events (~1% of run5pp)

